
Digital Object Identifier (DOI) 10.1007/s100520100672
Eur. Phys. J. C 20, 333–342 (2001) THE EUROPEAN

PHYSICAL JOURNAL C

HQET quark–gluon vertex at one loop

A.I. Davydychev1,a, A.G. Grozin2,b

1 Department of Physics, University of Mainz, Staudinger Weg 7, 55099 Mainz, Germany
2 Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

Received: 8 March 2001 /
Published online: 18 May 2001 – c© Springer-Verlag / Società Italiana di Fisica 2001

Abstract. We calculate the HQET quark–gluon vertex at one loop, for arbitrary external momenta, in an
arbitrary covariant gauge and space-time dimension. Relevant results and algorithms for the three-point
HQET integrals are presented. We also show how one can obtain the HQET limit directly from QCD
results for the quark–gluon vertex.

1 Introduction

Heavy quark effective theory (HQET) is an effective field
theory meant for approximating QCD for problems with a
single heavy quark having mass m when the characteristic
momenta of the light fields are much lower than m, and
there exists a 4-velocity v such that characteristic residual
momenta k = p−mv of the heavy quark are also small. It
has substantially improved our understanding of heavy-
quark physics during the last decade [1,2]. Methods of
perturbative calculations in HQET are reviewed in [3].

In this paper, we calculate the quark–gluon vertex in
the leading-order HQET (1/m0) at one loop, for arbitrary
external momenta, in an arbitrary covariant gauge, in
space-time dimension d = 4−2ε. This allows us to take all
on-shell limits (introducing additional 1/ε divergences) di-
rectly. The general d-dimensional results can also be used
for expansion around a dimension other than 4; for exam-
ple, 2-dimensional HQET was considered in the literature
in some detail.

A one-loop calculation of the QCD quark–gluon vertex
with a finite quark mass m has recently been completed
(see [4], where references to earlier partial results can be
found). We check how the HQET result can be obtained
by taking the limit m → ∞ in the QCD result.

Let the sum of bare one-particle-irreducible vertex di-
agrams in HQET (Fig. 1) be ig0taΓµ(k, q). The “full” mo-
menta of the incoming quark and the outgoing one are

p = mv + k, p′ = mv + k′, (1)

where v is the heavy-quark 4-velocity (v2 = 1), and k,
k′ are the residual momenta. The momentum transfer is
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Fig. 1. HQET quark–gluon vertex

q = p′ −p = k′ −k. In the HQET limit, m → ∞, k ∼ k′ ∼
q ∼ O(1). The heavy-quark propagator in HQET is

S(k) =
/v + 1

2
1

k · v + i0
, (2)

and the elementary quark–gluon vertex is ig0tavµ.
In the leading-order HQET, heavy-quark propagators

and vertices do not depend on the component of the heavy-
quark momenta orthogonal to v. Therefore, Γµ(k, q) does
not depend on k⊥ = k − (k · v)v. The only vectors in the
problem are v and q, and (see [3])

Γµ(k, q) = Γv(ω, ω′, q2)vµ + Γq(ω, ω′, q2)qµ, (3)

where
ω ≡ k · v, ω′ ≡ k′ · v (4)

are the residual energies, and q ·v = ω′ −ω. The functions
Γv and Γq can be reconstructed from the contractions

Γv =
(ω′ − ω)Γµqµ − q2Γµvµ

Q2 ,

Γq =
(ω′ − ω)Γµvµ − Γµqµ

Q2 , (5)

where
Q2 ≡ (ω′ − ω)2 − q2 (6)

is the 3-momentum transfer squared in the v rest frame.
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Fig. 2a,b. One-loop vertex diagrams

At the tree level, Γµ = vµ. One-loop corrections are
shown in Fig. 2. The contribution Γµ

a of the diagram
Fig. 2a is proportional to vµ; that of Fig. 2b has both struc-
tures.

The contraction Γµ(k, q)qµ can be simplified using the
identities shown in Fig. 3. Here a gluon line with a black
triangle at the end denotes a “longitudinal gluon inser-
tion”; when attached to a vertex, it means just the con-
traction with the incoming gluon momentum (note that it
contains no gluon propagator!). A dot near a propagator
means that its momentum is shifted by q. The color struc-
tures are singled out as prefactors in front of the propa-
gator differences. The circular arrow in Fig. 3b shows the
order of indices in the color structure of the three-gluon
vertex ifabc. Two last terms in Fig. 3b contain longitudi-
nal gluon insertions again; for them, the identities of Fig. 3
can be recursively used.

Application of these identities to the diagrams of Fig. 2
is shown in Fig. 4. Here the non-standard vertices of Fig. 5
are ig0ta and g2

0f
abctcvµ. This is, of course, just the one-

loop case of the general Ward–Slavnov–Taylor identity for
the quark–gluon vertex, which is discussed in [5,4] in de-
tail. The one-loop contributions to this identity are col-
lected in (2.28) and (2.29) of [4]. They can easily be asso-
ciated with the diagrams shown in Fig. 4. The only term
which requires some explanation is the diagram involving
a one-loop ghost self-energy contribution (the first dia-
gram in the second line of Fig. 4b). It has the form Iµv

µ,
where the integral Iµ depends on the only vector q; there-
fore, Iµvµ = (q · v)(Iµqµ)/q2 = (ω′ − ω)(Iµqµ)/q2. This
can be depicted as in Fig. 6. Thus, this term corresponds
to the last contribution on the r.h.s. of (2.29) of [4]. Using
Fig. 6, we can avoid introducing the non-standard vertex
shown in Fig. 5b.

For the contributions of the diagrams of Figs. 2a,b, we
have

Γµ
a (k, q)qµ =

(
1 − CA

2CF

)
(Σ(ω) −Σ(ω′)) , (7)

Γµ
b (k, q)qµ =

CA

2CF
(Σ(ω) −Σ(ω′)) + (ghost terms).

Here −iΣ(ω) is given by the one-loop self-energy diagram
of Fig. 7:

Σ(ω) =
CF

2
g2
0

(4π)d/2 (2 + (d− 3)ξ) I(ω), (8)

I(ω) = − i
πd/2

∫
ddl

(l · v + ω + i0)(l2 + i0)

= 2(−2ω)d−3Γ (3 − d)Γ (d/2 − 1) (9)

(see [9]). In what follows, we shall not explicitly write
+i0 in the denominators. Here ξ = 1 − a0; a0 is the
bare gauge-fixing parameter. We can see that the Yen-
nie gauge [6] (see also in [7]) is of special interest, since
Σ(ω) is finite at ξ = −2. Moreover, if the generalization
of the Yennie gauge to an arbitrary dimension is chosen as
ξ = −2/(d− 3) [8], then in the Abelian case (and, in par-
ticular, at one loop), the heavy-quark self-energy vanishes
[9] (see [3] for a tutorial). The two-loop HQET self-energy
was obtained in [9]; the three-loop one can be calculated
using the methods of [10]. These calculations are based on
integration by parts [11].

Using the identity (7), we can obtain the result for the
diagram of Fig. 2a without calculations:

Γµ
a (k, q) = −

(
1 − CA

2CF

)
Σ(ω′) −Σ(ω)

ω′ − ω
vµ. (10)

This result is also confirmed by direct calculation. Feyn-
man integrals of the type of Fig. 2a,∫

ddl

(l · v + ω)ν1(l · v + ω′)ν2(l2)ν3
, (11)

can always be calculated, for integer ν1, ν2, by applying

1
(l · v + ω)(l · v + ω′)

=
1

ω′ − ω

[
1

l · v + ω
− 1
l · v + ω′

]

the required number of times. We note that in [12] inte-
grals of the type (11) with different velocities v have been
examined.

Calculation of Fig. 2b requires more complicated Feyn-
man integrals. A method of their calculation is presented
in Sect. 2. Results for the HQET vertex, as well as various
limiting cases, are discussed in Sect. 3. Section 4 contains
a brief summary of the results obtained. In Appendix A,
we present general results for the Feynman integrals of the
type of Fig. 2b, for arbitrary d and powers of the denomi-
nators. In Appendix B some issues related to the m → ∞
limit of scalar integrals occurring in QCD are examined.
In Appendix C, we discuss the relation between the QCD
vertex at k, q 	 m and the HQET vertex. In Appendix D,
we present the HQET vertex for the heavy-quark scat-
tering in an external gluon field in the background-field
formalism.

2 Triangle integrals

2.1 Recurrence relations

We consider the class of Feynman integrals (Fig. 8)

V (ν0, ν1, ν2) = − i
πd/2

∫
ddl

(l · v + ω)ν0(l2)ν1((l − q)2)ν2
.

(12)
The cases ν0 = 0, ν2 = 0, ν1 = 0 are trivial; the results
are proportional to

V (0, 1, 1) = G(q2)
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Fig. 3a,b. Longitudinal gluon insertions into quark and gluon propagators

Fig. 4a,b. Ward–Slavnov–Taylor identities for the one-loop vertex

Fig. 5a,b. Non-standard vertices

Fig. 6. Relation between ghost self-energy contributions

= (−q2)d/2−2Γ (2 − d/2)Γ 2(d/2 − 1)
Γ (d− 2)

,

V (1, 1, 0) = I(ω), V (1, 0, 1) = I(ω′). (13)

When all the indices are non-zero, we use integration
by parts [11], similarly to [13,9]. Applying the operators

Fig. 7. Heavy-quark self-energy

Fig. 8. Feynman integral V

(∂/∂l) · v, (∂/∂l) · l, and (∂/∂l) · (l − q) to the integrand
of (12), we obtain the recurrence relations

[
ν00+ + 2ν11+(0− − ω)

+2ν22+(0− − ω′)
]
V = 0, (14)[

d− ν0 − ν2 − 2ν1 + ων00+

+ν22+(q2 − 1−)
]
V = 0, (15)
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[
d− ν0 − ν1 − 2ν2 + ω′ν00+

+ν11+(q2 − 2−)
]
V = 0, (16)

where 0±V (ν0, ν1, ν2) = V (ν0 ± 1, ν1, ν2), etc. When con-
structing the recurrence procedure we assume that all in-
dices νi are integer.

If ν1 < 0 and ν2 �= 1, we can raise ν1 by (15); if ν1 < 0
and ν2 = 1, ν0 �= 1, we can raise ν1 or ν2 by (14); if ν1 < 0
and ν2 = ν0 = 1, we can raise ν1 or ν0 by (16). The case
ν2 < 0 is symmetric. If ν1 > 1, we can lower it or ν2
by (16); the case ν2 > 1 is symmetric. We are left with
V (ν0, 1, 1).

Let us take q2/2 times (14), add ω times (16) and ω′
times (15), and subtract the 0− shifted sum of (15) and
(16). We obtain at ν1 = ν2 = 1[

Ω

2
ν00+ + (d− 2ν0 − 2)(ω + ω′) − 2(d− ν0 − 2)0−

]
×V (ν0, 1, 1)

=
[
1+2−(ω − 0−) + 2+1−(ω′ − 0−)

]
V (ν0, 1, 1), (17)

where
Ω ≡ q2 + 4ωω′ = (ω′ + ω)2 −Q2. (18)

The integrals on the right-hand side of (17) are trivial.
This relation allows us to raise or lower ν0.

Therefore, all integrals (12) can be expressed, exactly
at any d, as linear combinations of three trivial integrals
(13) and a non-trivial one, V (1, 1, 1) ≡ V(ω, ω′, Q). An
implementation of this algorithm in REDUCE can be ob-
tained at http://wwwthep.physik.uni-mainz.de/
Publications/progdata/mzth0101/.

2.2 Master integral

The master integral

V(ω, ω′, Q) = − i
πd/2

∫
ddl

(l · v + ω)l2(l − q)2
(19)

is convergent at d = 4, except for the case q2 = 0 when
it has a collinear divergence (infrared if q = 0). We shall
consider the region ω < 0, ω′ < 0, q2 < 0, where no real
intermediate states exist.

Using the HQET version of the Feynman parameteri-
zation (see, e.g., [3])

1
aαbβ

=
Γ (α+ β)
Γ (α)Γ (β)

∞∫
0

yβ−1dy
(a+ by)α+β

(20)

twice, we have

V =
4i
πd/2

∫
ddl dy dy′

[−yl2 − y′(l − q)2 − 2l · v − 2ω]3

= −2Γ (1 + ε) (21)

×
∞∫
0

∞∫
0

dy dy′

(y + y′)1−2ε [1 − 2(ωy + ω′y′) − q2yy′]1+ε ,

where y and y′ have the dimensionality of inverse energy.
For ε = 0 (d = 4), calculating the integral in y′ and

substituting y = 1/z, we obtain

V = 2

∞∫
0

log
−q2 − 2ω′z
z(z − 2ω)

dz

(z +Q− ω + ω′)(z −Q− ω + ω′)
, (22)

where z has the dimensionality of energy. Separating the
logarithm as

log
−q2 − 2ω′z
z(z − 2ω)

= − log
z − 2ω′

Q− ω − ω′ + log
−q2 − 2ω′z
z(Q− ω − ω′)

and making the substitution z = (−q2)/z′ in the second
integral, we obtain the representation

V = −2

∞∫
0

log
z − 2ω

Q− ω − ω′ dz

(z +Q− ω + ω′)(z −Q− ω + ω′)

− 2

∞∫
0

log
z − 2ω′

Q− ω − ω′ dz

(z +Q+ ω − ω′)(z −Q+ ω − ω′)
, (23)

which is explicitly symmetric under ω ↔ ω′. The poles of
the denominators at z = Q± (ω−ω′) are compensated by
the corresponding zeros of the numerators.

Finally, we obtain

QV(ω, ω′, Q) = Li2

(
Q+ ω + ω′

2ω

)
+ Li2

(
Q+ ω + ω′

2ω′

)

+ Li2

(
Q+ ω − ω′

2ω

)
+ Li2

(
Q− ω + ω′

2ω′

)

+ log
Q− ω − ω′

−2ω
log

Q− ω + ω′

−2ω

+ log
Q− ω − ω′

−2ω′ log
Q+ ω − ω′

−2ω′

−π2

3
. (24)

This expression has cuts at ω > 0, ω′ > 0, and Q <
|ω′ − ω|, where real intermediate states exist.

3 HQET quark–gluon vertex

3.1 General results

Here we present the one-loop HQET vertex, for arbitrary
d and ξ. The contribution of the diagram of Fig. 2a was
given in (10). For Fig. 2b, we obtain

Γµ
b qµ =

CA

2CF
(Σ(ω) −Σ(ω′)) − CA

g2
0

(4π)d/2

ω′ − ω

4Ω

×{2(ω′ + ω)
[
q2 + ωω′(4 + (d− 4)ξ)

]V(ω, ω′, Q)
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− [q2(4 − ξ) + 4ωω′(4 + (d− 4)ξ)
]G(q2)

+(d− 3)ξ (ω′I(ω) + ωI(ω′))}, (25)

Γµ
b vµ = CA

g2
0

(4π)d/2

ξ

8q2Ω2 {−2(d− 4)(ω′ + ω)

×[(d− 6)ξQ2q2ωω′

+ΩQ2(2q2 + (4 + (d− 4)ξ)ωω′)
+(2 + (d− 3)ξ)Ωq2ωω′]V(ω, ω′, Q)
+[4(d− 3)(d− 6)ξq2ωω′(ω′ + ω)2

−2Ωq2(q2 − 4ωω′(d− 4 + (d− 3)ξ))
+ΩQ2((d− 4)(4 + (d− 4)ξ)Ω
+(d− 3)(4 − (d− 4)ξ)q2)]G(q2)
−(d− 3)(d− 6)ξq2(ω′ + ω)2(ωI(ω′) + ω′I(ω))
−(d− 3)Ω[2q2(ω′ − ω)(I(ω′) − I(ω))
+(4 + (d− 4)ξ)(ω′2 − ω2)(ωI(ω′) − ω′I(ω))
+2(3 + ξ)q2(ωI(ω′) + ω′I(ω))]}, (26)

where Ω is defined in (18). We have also derived the first
contraction using (7) (Fig. 4). The second contraction van-
ishes in the Feynman gauge, because the three-gluon ver-
tex yields 0 when contracted with v in all three indices.
We also note that there are some cancellations in the gen-
eralized Yennie gauge, ξ = −2/(d − 3), as well as in the
“singular” gauge ξ = −4/(d− 4) (which was discussed in
[14] in connection with the three-gluon vertex).

If the bare vertex Γµ is expressed via the renormalized
quantities

g2
0

(4π)d/2 =
αs

4π
µ2εeγε [1 + O(αs)] , a0 = a [1 + O(αs)] ,

it should become ZΓΓ
µ
r , where ZΓ = 1+Z1αs/(4πε)+ · · ·

is a minimal renormalization constant, and the renormal-
ized vertex Γµ

r is finite in the limit ε → 0. Retaining only
the pole parts I(ω) → 2ω/ε, G(q2) → 1/ε, V(ω, ω′, Q) →
0, we obtain, either from (25) or from (26),

ZΓ = 1 +
[
(a− 3)CF +

a+ 3
4

CA

]
αs

4πε
. (27)

When g0Γ
µ = gΓµ

r Z
1/2
α ZΓ is multiplied by the external

leg renormalization factors ZQZ
1/2
A , it should give a finite

matrix element. Using

ZA = 1 −
[

1
2

(
a− 13

3

)
+

4
3
TFnl

]
αs

4πε
,

ZQ = 1 − (a− 3)CF
αs

4πε
(ZQ follows from (8), nl is the number of light flavors), we
arrive at

Zα = Z−2
Γ Z−2

Q Z−1
A = 1 − β0

αs

4πε
, β0 =

11
3
CA − 4

3
TFnl.

(28)
This means that the heavy-quark coupling with the gluon
field in HQET is renormalized in the same way as the other
QCD couplings. Of course, this must be the case, because
otherwise renormalization would destroy gauge invariance
of HQET.

3.2 q parallel or orthogonal to v

In the parallel case q = (ω′ − ω)v, Q = 0. The denomina-
tors of (19) are linearly dependent. Inserting

1 =
(l − q)2 − l2 + 2(ω′ − ω)(l · v + ω)

ω′2 − ω2

into the integrand, we obtain

V(ω, ω′, 0)

=
1

ω′ + ω

[
2G ((ω′ − ω)2

)− I(ω′) − I(ω)
ω′ − ω

]
, (29)

exactly at any d.
The vertex Γµ is, of course, proportional to vµ. There-

fore, we obtain, either from (25) or from (26),

Γv = 1 −
(

1 − CA

2CF

)
Σ(ω′) −Σ(ω)

ω′ − ω

−CA
g2
0

(4π)d/2

ξ

4(ω′ + ω)

[
(d− 3)

ω′I(ω′) − ωI(ω)
ω′ − ω

+2ωω′ I(ω′) − I(ω)
ω′2 − ω2 +

(ω′ − ω)2

ω′ + ω
G((ω′ − ω)2)

]
. (30)

It has an imaginary part, which is contained in G((ω′ −
ω)2).

The case when q is orthogonal to v (ω′ = ω, q2 = −Q2)
does not lead to great simplifications. The contribution
(10) of Fig. 2a now contains dΣ(ω)/dω = (d− 3)Σ(ω)/ω.
The contraction (25) is zero, and hence Γµ

b is parallel to
vµ, too. The contribution of Fig. 2b to Γv is obtained from
(26) by putting ω′ = ω.

3.3 q on the light cone

When q2 = 0, the reduction algorithm of Sect. 2.1 breaks
down. All V (ν0, ν1, ν2) with ν0 ≤ 0 vanish. We can use
(14) to lower ν0 down to 1. Let us suppose that ν2 >
0; otherwise, we can interchange ν1 ↔ ν2, ω ↔ ω′. The
relation

[(d− ν0 − ν1 − ν2)(ω′ − ω) − ν1ω
′ + ν2ω

+ων11+2− − ω′ν22+1−]V = 0, (31)

which is ω′ times (15) minus ω times (16), allows us to
lower ν2 down to 1. We are left with V (1, ν1, 1). Taking
(16), subtracting ω′ times (14) and adding 2ω′ times 1+

shifted (31), we obtain at ν0 = ν2 = 1[
d− ν1 − 3 + 2ω′(ω′ − ω)(d− 2ν1 − 4)1+]V (1, ν1, 1)

=
[
ν1 − 2ωω′(ν1 + 1)1+]1+2−V (1, ν1, 1), (32)

where the integrals on the right-hand side are trivial. Us-
ing this relation, we can lower or raise ν1 to 0. Therefore,
all the integrals V (ν0, ν1, ν2) at q2 = 0 can be reduced to
I(ω) and I(ω′). For example, for V (1, 1, 1) we have

V(ω, ω′, |ω′ − ω|) =
(d− 3)(ω′I(ω) − ωI(ω′))

2(d− 4)ωω′(ω′ − ω)
, (33)
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at arbitrary d.
Repeating, with the new algorithm, the calculation of

the diagram in Fig. 2b at q2 = 0, we obtain

Γµ
b qµ = CA

g2
0

(4π)d/2

1
8(d− 4)ωω′

×[2(d− 5 + (d− 3)(d− 4)ξ)ωω′(I(ω) − I(ω′))
−(d− 3)(2 + (d− 4)ξ)(ω′2I(ω) − ω2I(ω′))], (34)

Γµ
b vµ = CA

g2
0

(4π)d/2

(d− 3)ξ
16(d− 6)ω2ω′2(ω′ − ω)

×[2(d− 6)ω2ω′2(I(ω) − I(ω′))
+(2 − (d− 7)ξ)ωω′(ω′2I(ω) − ω2I(ω′))
+(2 + (d− 5)ξ)(ω′4I(ω) − ω4I(ω′))]. (35)

These results can also be obtained from (25) and (26), if
we expand the numerator of (26) up to the q2 term.

The case q = 0 belongs to all the categories considered
above. We obtain, from each of the above results, Γq = 0,

Γv = 1 − g2
0

(4π)d/2 (d− 3)
I(ω)
8ω

× [4 (2 + (d− 3)ξ)CF − (4 + (d− 5)ξ)CA] , (36)

V(ω, ω, 0) = − (d− 3)I(ω)
2ω2 ,

exactly at any d.

3.4 Ω = 0

Another interesting case is Ω = 0 (q2 = −4ωω′). After
reducing V (ν0, ν1, ν2) to V (ν0, 1, 1) and trivial integrals
(Sect. 2.1), we can use (17) to reduce ν0 to 0. In particular,

V(ω, ω′, ω′ + ω) =
d− 3

2(d− 4)(ω′ + ω)

×
[
4G(−4ωω′) − I(ω)

ω
− I(ω′)

ω′

]
, (37)

for any d. Repeating the calculation of the vertex, we ob-
tain

Γµ
b qµ = CA

g2
0

(4π)d/2

1
16(d− 4)(d− 6)ωω′(ω′ + ω)2

×
{

4
[

− (d− 6)(4 + (d− 4)ξ)(ω′ + ω)2

+4(d− 3)(d− 4)ξωω′
]
ωω′(ω′ − ω)G(−4ωω′)

+
[
(4(d− 6) + (d− 3)(3d− 16)ξ)(ω′ + ω)2

−4(d− 3)(d− 4)ξωω′
]

×(d− 4)(ω′ + ω)(ω′I(ω) − ωI(ω′))

+
[
(4(d− 6) − (d− 3)(d− 4)(d− 8)ξ)(ω′ + ω)2

−4(d− 3)(d− 4)ξωω′
]

×(ω′ − ω)(ω′I(ω) + ωI(ω′))
}
, (38)

Γµ
b vµ = CA

g2
0

(4π)d/2

ξ

32(d− 6)(d− 8)ω2ω′2(ω′ + ω)2

×
{[

(d− 6)(d− 8)(4 + (d− 4)ξ)(ω′ + ω)4

+4(d− 8)(2d− (d− 3)(d− 4)ξ)ωω′(ω′ + ω)2

+32(d− 3)(d− 8 − 3ξ)ω2ω′2
]
ωω′G(−4ωω′)

−
[
(2(d− 7)(d− 8) − (d− 4)(d− 5)ξ)(ω′ + ω)2

−4(d− 5)(d− 8 − 3ξ)ωω′
]

×(d− 3)(ω′ + ω)(ω′2I(ω) + ω2I(ω′))

+
[
(d− 5)(2(d− 8) + (d− 4)ξ)(ω′ + ω)2

+4(d− 8 − 3ξ)ωω′
]

×(d− 3)(ω′ − ω)(ω′2I(ω) − ω2I(ω′))
}
. (39)

3.5 Quark(s) on the mass shell

If one of the quarks is on its mass shell, say ω′ = 0, then

QV(ω, 0, Q) = 2 Li2

(
Q+ ω

2ω

)
+ log2 Q− ω

−2ω

− 1
2

log2 Q− ω

Q+ ω
− 2π2

3
(40)

at d = 4. The contractions of the vertex are obtained from
(25) and (26) by setting I(ω′) = 0 and then ω′ = 0.

When both quarks are on shell (ω = ω′ = 0),

Γµ
b qµ = 0, (41)

Γµ
b vµ = CA

g2
0

(4π)d/2

ξ

8
[−2(4d− 13) + (d− 4)ξ] G(q2).

In this case, V(0, 0, Q) does not appear.
It is easy to consider the cases when q is parallel to v

and ω′ = 0, and when q2 = 0, ω′ = 0.

4 Conclusion

We have obtained general expressions (10), (25) and (26)
for the one-loop HQET quark–gluon vertex. Using the re-
currence relations (14)–(17), we expressed the results in
terms of one non-trivial integral V(ω, ω′, Q) (19) and some
trivial integrals (13). For the integral (19) in four dimen-
sions, we have obtained an analytic result (24) in terms of
dilogarithms. In Sects. 3.2–3.4 we have also studied some
special limits of interest.

In Appendix A we have provided some results for the
integrals (12) with arbitrary indices and in arbitrary di-
mension. We have also discussed, in Appendix B, how the
HQET limit can be obtained directly from the standard
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integrals occurring in the QCD calculation. Using this pre-
scription, in Appendix C we have examined the m → ∞
limit of the general QCD result [4] for the one-loop quark–
gluon function, and we have found that it is in agreement
with our calculation. We have also presented the result for
the background-field vertex (Appendix D).
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Appendix

A One-loop HQET integrals

The result for the two-point HQET integral is well known
[9]:

I(ν0, ν) ≡ − i
πd/2

∫
ddl

(l · v + ω)ν0(l2)ν

= (−1)ν0+ν2ν0(−2ω)d−ν0−2ν

Γ (ν0 + 2ν − d)Γ (d/2 − ν)
Γ (ν0)Γ (ν)

. (42)

For the triangle integral (12), using Feynman param-
eters, we arrive at the following double integral represen-
tation:

V (ν0, ν1, ν2) =
(−1)ν0+ν1+ν22ν0Γ (ν0 + ν1 + ν2 − d/2)

Γ (ν0)Γ (ν1)Γ (ν2)

×
∞∫
0

∞∫
0

dydy′yν1−1y′ν2−1(y + y′)ν0+ν1+ν2−d

[1 − 2ωy − 2ω′y′ − q2yy′]ν0+ν1+ν2−d/2 . (43)

The symmetry (ω, ν1) ↔ (ω′, ν2) is explicit.
In the special case ω = ω′ = 0, the integral (43) can

be evaluated in terms of Γ functions,

V (ν0, ν1, ν2)|ω=ω′=0 = (−1)ν0+ν1+ν22ν0−1 (44)

×(−q2)d/2−ν0/2−ν1−ν2Γ (ν1 + ν2 + ν0/2 − d/2)

×Γ (ν0/2)Γ (d/2 − ν0/2 − ν1)Γ (d/2 − ν0/2 − ν2)
Γ (ν0)Γ (ν1)Γ (ν2)Γ (d− ν0 − ν1 − ν2)

.

In particular, for νi = 1 we get

V(0, 0, Q) = −Γ (1/2)Γ ((5 − d)/2)Γ 2((d− 3)/2)
Γ (d− 3)Q1+2ε

= −π2

Q
+ O(ε). (45)

In another special case, q2 = 0, we get a hypergeomet-
ric function,

V (ν0, ν1, ν2)|q2=0 = (−1)ν0+ν1+ν22ν0(−2ω)d−ν0−2ν1−2ν2

×Γ (ν0 + 2ν1 + 2ν2 − d)Γ (d/2 − ν1 − ν2)
Γ (ν0)Γ (ν1 + ν2)

× 2F1

(
ν2, ν0 + 2ν1 + 2ν2 − d

ν1 + ν2

∣∣∣∣∣ 1 − ω′

ω

)
. (46)

Using simple transformations of the 2F1 function, it is
easy to see that the result obeys the symmetry (ω, ν1) ↔
(ω′, ν2), as it should. Note that the structure of the result
(46) is quite similar to that of the two-point integral with
different masses and zero external momentum, see (2.9) of
[15]. When ν1 = ν2 = 1, the result (46) reduces to

V (ν0, 1, 1)|q2=0 = (−1)ν02d−4Γ (ν0 − d+ 3)Γ (d/2 − 2)

× (−ω′)d−ν0−3 − (−ω)d−ν0−3

ω′ − ω
. (47)

Let us represent the denominator of (43) in terms of
double Mellin–Barnes integral, expanding with respect to
ω and ω′ (see, e.g., (3.4) of [15]). Then, the resulting mo-
mentum integral can be recognized as

V (ν0 + t1 + t2, ν1 + t1, ν2 + t2)|ω=ω′=0,d→d+2t1+2t2 , (48)

where t1 and t2 are the contour integration variables. Us-
ing (44) we can evaluate the integral (48) in terms of Γ
functions. Making a linear substitution for the contour in-
tegration variables (t1 = s + t, t2 = s − t), we arrive at
the following double Mellin–Barnes representation for the
integral (12):

V (ν0, ν1, ν2) =
(−1)ν0+ν1+ν22ν0−1(−q2)d/2−ν0/2−ν1−ν2

Γ (ν0)Γ (ν1)Γ (ν2)Γ (d− ν0 − ν1 − ν2)

× 1
(2πi)2

i∞∫
−i∞

i∞∫
−i∞

dsdt
(

−4ωω′

q2

)s ( ω
ω′
)t

×Γ (−s− t)Γ (t− s)
×Γ (d/2 − ν0/2 − ν1 − t)Γ (d/2 − ν0/2 − ν2 + t)
×Γ (ν0/2 + ν1 + ν2 − d/2 + s)Γ (ν0/2 + s). (49)

B QCD integrals in the HQET limit

Here we discuss the relation of massive integrals occurring
in standard QCD calculations and HQET integrals. First,
let us consider the two-point integral with one massive line
and one massless line,

J(ν0, ν;m, 0) =
∫

ddl

[(p+ l)2 −m2]ν0 (l2)ν
. (50)

For general values of ν0, ν and d, such integrals have been
examined in [16,17].

When we substitute p = mv + k, the massive denomi-
nator in (50) becomes[

2m(l + k) · v + (l + k)2
]−ν0

. (51)

For k 	 m, several regions of integration in l are essential.
When l ∼ k, we can expand the heavy propagator (51) in
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both k/m and l/m, and it becomes the HQET propagator.
The leading term of this HQET contribution (called “ul-
trasoft” in [18,19]) yields 1/mν0 times an HQET integral
(42), which is proportional to (−2ω)d−ν0−2ν , by dimen-
sionality. Higher terms form an expansion in k/m.

Let us subtract and add this expansion of the heavy
propagator to the exact one. In the difference, the con-
tribution of small l ∼ k is suppressed; typically, l ∼ m.
Therefore, we can expand this integrand difference in reg-
ular series in k/m, and integrate term by term. Integrals
of all terms of the HQET integrand expansion in k/m van-
ish in dimensional regularization, because they contain no
scale. Therefore, this “hard” contribution can be obtained
by expanding the exact QCD integrand (51) in k/m, and
integrating term by term. It is analytical at k = 0, by con-
struction. The leading term is proportional to md−2ν0−2ν ,
by dimensionality, whereas the higher terms form an ex-
pansion in k/m. This separation of J(ν0, ν;m, 0) at k 	 m
into two contributions [17] is a particular case of a more
general threshold expansion [18]. Note that k plays the
role of the threshold parameter, since p2 −m2 ∼ mk.

We can check these qualitative considerations, using an
explicit expression for J(ν0, ν;m, 0). It can be presented
in terms of the 2F1 function of z = p2/m2 (see (10) of
[16]). Note that in the HQET limit z approaches 1,

z =
(mv + k)2

m2 , 1 − z = −2ω
m

− k2

m2 ,

i.e., it is at the border of convergence of the 2F1 function.
Transforming from the variable z to 1 − z, we obtain (see
also (1.12)–(1.15) of [17])

J(ν0, ν;m, 0) = iπd/2(−1)ν0+νmd−2ν0−2ν

×
{
Γ (ν0 + ν − d/2)Γ (d− ν0 − 2ν)

Γ (ν0)Γ (d− ν0 − ν)

×2F1

(
ν, ν0 + ν − d/2
ν0 + 2ν − d+ 1

∣∣∣∣∣ 1 − z

)

+
Γ (ν0 + 2ν − d)Γ (d/2 − ν)

Γ (ν0)Γ (ν)
(1 − z)d−ν0−2ν

×2F1

(
d/2 − ν, d− ν0 − ν

d− ν0 − 2ν + 1

∣∣∣∣∣ 1 − z

)}
. (52)

We see that the first term here is nothing but the
“hard” contribution. It has a prefactor md−2ν0−2ν . The
prefactor of the second 2F1 function is

md−2ν0−2ν(1 − z)d−ν0−2ν ⇒ m−ν0(−2ω)d−ν0−2ν ,

up to higher powers of 1/m. This is the HQET (“ultra-
soft”) contribution; in the leading order, it yields

J(ν0, ν;m, 0) ⇒ iπd/2(2m)−ν0I(ν0, ν),

where I(ν0, ν) is defined in (42).
The value of (2m)ν0J(ν0, ν;m, 0) at the singular point

1/m = 0 is (up to a factor iπd/2) the HQET integral

(42). When setting 1/m = 0, we discard the “hard” con-
tribution, which is proportional to md−ν0−2ν , because we
can always choose d small enough for this contribution to
vanish. The naive Taylor expansion in 1/m is given by the
HQET contribution. Similarly, the value of J(ν0, ν;m, 0)
at the singular point k = 0 is the QCD on-shell integral.
When setting k = 0, we discard the HQET contribution,
which is proportional to (−2ω)d−ν0−2ν , because we can al-
ways choose d large enough for this contribution to vanish.
The naive Taylor expansion in k is given by the “hard”
contribution. Neither of these naive expansions, taken sep-
arately, describes J(ν0, ν;m, 0) at k 	 m. It is given by
the sum of both contributions, “hard” and HQET (“ul-
trasoft”) ones (see in [18]).

Now, let us consider off-shell three-point integrals with
one massive and two massless internal lines. For arbitrary
powers of propagators, such vertex integrals has been con-
sidered in [16] (see (25)–(29)) and [20], (4.1)–(4.5). Using
the Mellin–Barnes representation, (4.2) of [20] (see also
(26) of [16]), we see that two (of three) arguments, p2

1/m
2

and p2
2/m

2 (we denote p2
1 = k2

23, p2
2 = k2

13, p2
3 = k2

12)
are approaching 1 in our limit, which is at the border of
convergence of the corresponding function.

Again, as in the two-point case, we need to construct
the analytic continuation of this representation in terms
of the variables containing (m2 − p2

1) and (m2 − p2
2). To

do this in the Mellin–Barnes representation, we use the
contour-integral version of the corresponding formula for
2F1, namely, (A7) of [20] (where we put ν3 = ν0). In this
way, we arrive at

J1(ν1, ν2, ν0;m)

=
iπd/2(−1)ν0+ν1+ν2md−2ν0−2ν1−2ν2

Γ (ν1)Γ (ν2)Γ (ν0)Γ (d− ν1 − ν2 − ν0)

× 1
(2πi)3

∫ i∞∫
−i∞

∫
dsdtdu

(
m2 − p2

1

m2

)s(
m2 − p2

2

m2

)t

×
(

− p2
3

m2

)u

Γ (−s)Γ (−t)Γ (−u)

×Γ (d− ν0 − 2ν1 − 2ν2 − s− t− 2u)
×Γ (ν0 + ν1 + ν2 − d/2 + s+ t+ u)
×Γ (ν1 + t+ u)Γ (ν2 + s+ u). (53)

Now, we need to analyze the contributions of the poles
in the right half-plane of the contour variable u, since they
correspond to increasing powers of p2

3/m
2. There are only

two series of poles (with j = 0, 1, 2, . . .),

(i)u = j (due toΓ (−u)) and
(ii)u = d/2 − ν0/2 − ν1 − ν2 − s/2 − t/2 + j/2

(due toΓ (d− ν0 − 2ν1 − 2ν2 − s− t− 2u)).

The prefactors contain md−2ν0−2ν1−2ν2 (case (i)) and
m−ν0 (case (ii)). The series (i) yields the “hard” contri-
bution. The HQET (“ultrasoft”) contribution is given by
the series (ii), whose leading term is j = 0. These two
contributions are related to the singular limits 1/m = 0
and k = q = 0 in a way similar to the two-point case.



A.I. Davydychev, A.G. Grozin: HQET quark–gluon vertex at one loop 341

Picking up this leading HQET contribution, we arrive
at a double Mellin–Barnes representation (in terms of the
remaining contour integrals over s and t), where the kine-
matical variables involved yield (in the limit m → ∞) the
HQET variables,

m2 − p2
1

m
√

−p2
3

→ −2ω′√
−q2 ,

m2 − p2
2

m
√

−p2
3

→ −2ω√
−q2 .

After introducing the new contour variables (s+ t)/2 and
(s − t)/2 we see that the resulting Mellin–Barnes repre-
sentation is equivalent to (49), so that

J1(ν1, ν2, ν0;m) ⇒ iπd/2(2m)−ν0V (ν0, ν1, ν2).

Therefore, the HQET integrals can be formally ob-
tained directly from the standard loop integrals, by picking
up the formal Taylor series in 1/m which has no prefactors
containing m to a power depending on d. Such a prescrip-
tion is similar to some other prescriptions in dimensional
regularization. For instance, considering the massless limit
of the integral (50) we need to represent the result in terms
of the functions of the variable m2/p2, and then discard
the contribution containing m−2ε (see (11) of [16]). We
have also demonstrated that the HQET contributions are
equivalent to the “ultrasoft” ones, in the language of the
threshold expansion [18]. In other words, in the cases con-
sidered the exact result is given by the sum of two con-
tributions. The first one is given by a formal Taylor ex-
pansion of the integrand in the small parameter of the
threshold expansion (the “hard” contribution). The sec-
ond one is nothing but the HQET series in 1/m.

C QCD vertex at m → ∞
If we substitute the “hard” parts of all scalar integrals into
the QCD vertex, then, in the limit k → 0, q → 0, we just
get the on-shell vertex at q = 0. Corrections to this limit
are regular expansion terms in k/m, q/m. Since we do not
consider 1/m suppressed terms here, these corrections can
be omitted.

If we substitute the HQET parts of all scalar inte-
grals (see Appendix B), we should obtain the HQET ver-
tex, which was calculated in Sect. 3. In order to make a
strong check of both the results of [4] (where the one-loop
quark–gluon vertex was calculated in arbitrary gauge and
dimension) and of the present ones, we consider here the
HQET limit of the QCD vertex [4].

Using the standard decomposition of the quark–gluon
vertex [21] (see also [22,4]), it can be split into longitudinal
and transverse parts,

Γµ =
4∑

i=1

λiL
µ
i +

8∑
i=1

τiT
µ
i , (54)

where λi and τi are scalar functions depending on kine-
matical variables, whereas Lµ

i and Tµ
i are vectors which

also involve Dirac matrices (see Sect. IID of [4] for further
details).

We substitute

p1 = −mv − k − q, p2 = mv + k, p3 = q.

At the leading order in 1/m, the initial and final quark
spinors obey /vu = u. Therefore, we can sandwich Γµ be-
tween the projectors (/v + 1)/2, and use

/v + 1
2

γµ /v + 1
2

=
/v + 1

2
vµ /v + 1

2
.

With the required accuracy, there are three independent
structures:

Lµ
1 ⇒ vµ + O(1/m),

Tµ
3 ⇒ q2vµ − (ω′ − ω)qµ + O(1/m), Tµ

5 ⇒ 1
2

[γµ, /q].

The others are

Lµ
2 ⇒ 4m2Lµ

1 + O(m), Lµ
3 ⇒ −2mLµ

1 + O(1),
Lµ

4 ⇒ O(1),

Tµ
1 ⇒ mTµ

3 + O(1), Tµ
2 ⇒ 2m2Tµ

3 + O(m),
Tµ

4 ⇒ O(m), Tµ
6 ⇒ O(1), Tµ

7 ⇒ O(m),
Tµ

8 ⇒ mTµ
5 + O(1).

According to Appendix B, the HQET-relevant “ultrasoft”
parts of the scalar integrals are

ηκ̃ ⇒ 0, ηκ2,3 ⇒ 0, ηκ0,3 ⇒ G(q2),

ηκ1,2 ⇒ I(ω)
2m

, ηκ1,1 ⇒ I(ω′)
2m

,

ηϕ1 ⇒ V(ω, ω′, Q)
2m

, ηϕ2 ⇒ 1
(2m)2

I(ω′) − I(ω)
ω′ − ω

,

where the notations ϕi, κi,l and η are defined in Sect. IIA
of [4].

Therefore, at the leading order (1/m0) the HQET limit
of the QCD vertex (54) yields

(λ1 + 4m2λ2 − 2mλ3)Lµ
1 + (mτ1 + 2m2τ2 + τ3)Tµ

3

+(τ5 +mτ8)Tµ
5 .

Using the results for λi and τi listed in [4], we have ob-
tained the result that at the order 1/m0 the coefficient of
the chromomagnetic structure Tµ

5 vanishes, whereas those
of Lµ

1 and Tµ
3 reproduce the results (10), (25) and (26),

for arbitrary d and ξ.
Thus the QCD vertex at small k, q is equal to its on-

shell value at k = q = 0 plus the HQET vertex, up to 1/m
corrections. We can reformulate this statement: the QCD
vertex in the on-shell renormalization scheme is equal to
the HQET vertex in the on-shell renormalization scheme,
up to 1/m corrections. In QCD, the on-shell renormaliza-
tion subtracts from the one-loop correction its value at
k = q = 0. In HQET, the on-shell renormalized vertex
equals the bare one, because its value at k = q = 0 van-
ishes.
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D Background-field vertex

The background-field formalism [23] is convenient for con-
sidering heavy-quark scattering in an external gluon field.
In this method, the vertex (Fig. 1) with the background
gluon differs from the ordinary one. The diagram of Fig. 2a
still gives (10), because the quark–gluon elementary ver-
tex does not change. The contraction of the three-gluon
vertex with a background gluon momentum contains no
ghost terms, just the first difference in Fig. 3b. Therefore,

Γµ
b qµ =

CA

2CF
(Σ(ω) −Σ(ω′)) .

This is also confirmed by a direct calculation. For the other
contraction, we obtain

Γµ
b vµ = CA

g2
0

(4π)d/2

1
8q2Ω2

×
{

2(ω′ + ω)[2Ω2q2 − (d− 8)ξΩ2Q2 − dξΩQ2q2

−(16 + (d2 − 18d+ 40)ξ)ξΩQ2ωω′

−(d− 3)(d− 4)ξ2Ωq2ωω′ − d2ξ2Q2q2ωω′

−8(5d− 12)ξ2Q2ω2ω′2]V(ω, ω′, Q)

+
[

− 8Ω2q2 + (4(2d− 7) − (d− 4)ξ)ξΩ2Q2

−8(d− 3)(2 − (d− 5)ξ)ξΩQ2ωω′

+4(d− 3)(d− 4)ξ2Ωq2ωω′

−16(d− 3)(d− 6)ξ2Q2ω2ω′2
]
G(q2)

+2(d− 3)ξ
[
(2 + ξ)q2(ω′3I(ω) + ω3I(ω′))

+2(4 + (d− 4)ξ)ωω′(ω′2 − ω2)
×(ω′I(ω) − ωI(ω′))
−((1 + ξ)Ω + (d− 6)ξωω′)q2

×(ω′I(ω) + ωI(ω′))
−(q2 + (6 + (d− 5)ξ)ωω′)q2

×(ωI(ω) + ω′I(ω′))
]}
.
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